CALCIUM UTILIZATION IN CONTRACTURES INDUCED BY ACETYLCHOLINE OR HIGH-POTASSIUM SALINE IN MOLLUSCAN PROBOSCIS MUSCLES

Author:

BROOKS D. D.1,HUDDART H.1,LENNARD R.2,HILL R. B.1

Affiliation:

1. Department of Zoology, The University of Rhode Island, Biological Sciences Center, Kingston, Rhode Island 02881, USA;

2. Department of Zoology, The University of Rhode Island, Biological Sciences Center, Kingston, Rhode Island 02881, USA

Abstract

The mechanisms by which high-K+ saline and acetylcholine (ACh) mobilize cellular calcium in molluscan muscle was studied in three proboscis muscles of Busycon canaliculatum. BAY K 8644, a calcium agonist, enhanced tonic force induced by exposure to 25 mmoll−1 K+ in the odontophore and radular retractor muscles but inhibited this response in the radular sac muscle. Its effect on the radular protractor muscle was concentration-dependent, excitatory at 10−7 mol l−1 and inhibitory at higher concentrations. The tonic response to 80 mmoll−1 1 K+ was enhanced by BAY K 8644 in the odontophore retractor and radular retractor muscles but inhibited in the radular sac muscle. In all muscles, BAY K 8644 eliminated the fast twitches induced by 80 mmolI−1 K+, and inhibited the tonic ACh responses. Sucrose-gap studies with the radular protractor muscle showed that the effects of BAY K 8644 on the depolarizations induced by K+ and ACh were similar. The effect on the ACh-induced depolarization suggested that this agent had inhibited sodium influx through the ACh receptor Mytelase enhanced ACh-induced tonic force, but at 10−4moll−1 it inhibited the response to doses of ACh above 10−5moll−1. Mytolon reduced the maximum ACh-induced tonic force and increased the response threshold to ACh. ACh and high-K+ depolarization pathways were not synergistic for force development The existence of two separate cellular calcium pools, independently released by high-K+ saline and ACh, seems improbable. We suggest that K+ and ACh act via separate mechanisms to release calcium from a single cellular calcium pool

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3