Avian marginal zone cells function as primitive streak inducers only after their migration into the hypoblast

Author:

Eyal-Giladi H.,Lotan T.,Levin T.,Avner O.,Hochman J.

Abstract

Hypoblast cells of posterior marginal zone origin have been shown previously to be the inducers of primitive streak in the avian embryo. Here we checked: (1) whether the above cells acquire their inductivity while still whithin the marginal zone; (2) can inductivity be found in supernatants of defined blastodermic regions; (3) can differences in the electrophoretic pattern be shown between inducing and non-inducing tissue fragments and their conditioned media, which might give a clue as to what the inductive substance is. The following observations were made: 1. (a) Stage X chick posterior marginal zone cells prior to their migration into the hypoblast do not induce a primitive streak, when applied to a stage XIII competent epiblast central disc. (b) A posterior marginal zone fragment, when applied to an epiblast central disc, even after being preincubated for up to 9 hours in vitro, is still non-inductive. (c) Mechanically fragmented stage X posterior marginal zones when applied as a layer to epiblast central discs are non-inductive. (d) Hypoblastic tissue in strip form induces a primitive streak. 2. Competent stage XIII epiblast central discs (chick) were incubated for 2 hours in supernatants of stage XIII epiblasts or hypoblasts. Whereas no inductive effect was exerted by the epiblast supernatant, primitive streaks developed in about 50% of the epiblast central discs incubated in the hypoblast supernatant. 3. Electrophoretic analysis (quails) reveals a protein of 28x10-3 Mr that is enriched in both hypoblastic tissue and its incubation medium and not in the epiblast + marginal zone + area opaca and their incubation medium. These findings suggest a possible correlation between this protein and the induction process.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3