Palladin binds to Eps8 and enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells

Author:

Goicoechea Silvia1,Arneman Daniel1,Disanza Andrea23,Garcia-Mata Rafael4,Scita Giorgio23,Otey Carol A.1

Affiliation:

1. Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, NC 27 27599, USA

2. IFOM Istituto FIRC di Oncologia Molecolare Via Adamello 16, 20139, Milan, Italy

3. Department of Experimental Oncology, Istituto Europeo di Oncologia (IEO), Via Ripamonti 435, 20141, Milan, Italy

4. Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC 27 27599, USA

Abstract

Palladin is a widely expressed phosphoprotein that plays an important role in organizing the actin cytoskeleton. Palladin is concentrated in multiple actin-based structures involved in cell motility and adhesion, including stress fibers, focal adhesions, cell-cell junctions, growth cones and Z-discs. Here, we show that palladin also localizes to the dorsal, circular ruffles that form transiently in response to growth factor stimulation. More importantly, palladin knockdown results in decreased ruffle formation and decreased Rac activation following PDGF treatment. In addition, we describe a novel interaction between palladin and Eps8, a receptor tyrosine kinase (RTK) substrate that participates in the activation of the Rac-specific guanine nucleotide-exchange function of Sos-1. Eps8 was identified as a molecular partner for palladin in a yeast two-hybrid screen, and the interaction was confirmed biochemically in co-immunoprecipitation assays. The two proteins were found to colocalize extensively in dorsal ruffles. Palladin also localizes to podosomes after phorbol ester stimulation, and palladin knockdown results in decreased podosome formation in response to PDBu. Together, these data provide strong evidence for a direct and specific interaction between palladin and Eps8, and suggest that they act together in the rapid and transient remodeling of the actin cytoskeleton, which promotes the formation of highly dynamic membrane protrusions in response to PDGF and phorbol ester treatment.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3