Xenopus oocytes reactivate muscle gene transcription in transplanted somatic nuclei independently of myogenic factors

Author:

Biddle Adrian12,Simeoni Ilenia1,Gurdon J. B.1

Affiliation:

1. Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road,Cambridge CB2 1QN and Department of Zoology, Cambridge University, Cambridge,UK.

2. Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, UK.

Abstract

Transplantation into eggs or oocytes is an effective means of achieving the reprogramming of somatic cell nuclei. We ask here whether the provision of gene-specific transcription factors forms part of the mechanism by which a gene that is repressed in somatic cells is transcribed in oocytes. We find that M1 oocytes have an extremely strong transcription-inducing activity. They cause muscle genes of nuclei from non-muscle somatic cells, after injection into oocytes, to be transcribed to nearly the same extent as muscle genes in muscle cells. We show, surprisingly, that the myogenic factor MyoD and other known myogenic factors are not required to induce the transcription of muscle genes in a range of non-muscle somatic cell nuclei after transplantation to Xenopus oocytes. The overexpression of Id, a dominant-negative repressor of MyoD, prevents maternal MyoD from binding to its consensus sequences; nevertheless, muscle genes are activated in somatic nuclei to the same extent as without Id. We conclude that M1 oocytes can reprogram somatic nuclei in a different way to other experimental procedures: oocytes do not suppress the transcription of inappropriate genes and they activate a gene without the help of its known transcription factors. We suggest that these characteristics might be a special property of amphibian oocytes, and possibly of oocytes in general.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3