An I47L substitution in the HOXD13 homeodomain causes a novel human limb malformation by producing a selective loss of function

Author:

Caronia Giuliana1,Goodman Frances R.2,McKeown Carole M. E.3,Scambler Peter J.2,Zappavigna Vincenzo14

Affiliation:

1. Department of Molecular Biology and Functional Genomics, DIBIT-H San Raffaele,Via Olgettina 58, 20132 Milano, Italy

2. Molecular Medicine Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK

3. Clinical Genetics Unit, Birmingham Women's Hospital, Edgbaston, Birmingham B15 2TG, UK

4. Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/d, Modena 41100, Italy

Abstract

The 5′ members of the Hoxa and Hoxd gene clusters play major roles in vertebrate limb development. One such gene, HOXD13, is mutated in the human limb malformation syndrome synpolydactyly. Both polyalanine tract expansions and frameshifting deletions in HOXD13 cause similar forms of this condition, but it remains unclear whether other kinds of HOXD13mutations could produce different phenotypes. We describe a six-generation family in which a novel combination of brachydactyly and central polydactyly co-segregates with a missense mutation that substitutes leucine for isoleucine at position 47 of the HOXD13 homeodomain. We compared the HOXD13(I47L) mutant protein both in vitro and in vivo to the wild-type protein and to an artificial HOXD13 mutant, HOXD13(IQN), which is completely unable to bind DNA. We found that the mutation causes neither a dominant-negative effect nor a gain of function, but instead impairs DNA binding at some sites bound by wild-type HOXD13. Using retrovirus-mediated misexpression in developing chick limbs, we showed that wild-type HOXD13 could upregulate chick EphA7in the autopod, but that HOXD13(I47L) could not. In the zeugopod, however,HOXD13(I47L) produced striking changes in tibial morphology and ectopic cartilages, which were never produced by HOXD13(IQN), consistent with a selective rather than generalised loss of function. Thus, a mutant HOX protein that recognises only a subset of sites recognised by the wild-type protein causes a novel human malformation, pointing to a hitherto undescribed mechanism by which missense mutations in transcription factors can generate unexpected phenotypes. Intriguingly, both HOXD13(I47L) and HOXD13(IQN)produced more severe shortening in proximal limb regions than did wild-type HOXD13, suggesting that functional suppression of anterior Hox genes by more posterior ones does not require DNA binding and is mediated by protein:protein interactions.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3