Can red flowers be conspicuous to bees? Bombus dahlbomii and South American temperate forest flowers as a case in point

Author:

Martínez-Harms J.123,Palacios A. G.2,Márquez N.13,Estay P.4,Arroyo M. T. K.1,Mpodozis J.3

Affiliation:

1. Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile

2. Centro de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile

3. Departamento de Biología, Universidad de Chile, Santiago, Chile

4. Instituto de Investigaciones Agropecuarias, La Platina, Santiago, Chile

Abstract

SUMMARY It has been argued that trichromatic bees with photoreceptor spectral sensitivity peaks in the ultraviolet (UV), blue and green areas of the spectrum are blind to long wavelengths (red to humans). South American temperate forests (SATF) contain a large number of human red-looking flowers that are reported to be visited by the bumblebee Bombus dahlbomii. In the present study, B. dahlbomii's spectral sensitivity was measured through electroretinogram (ERG) recordings. No extended sensitivity to long wavelengths was found in B. dahlbomii. The spectral reflectance curves from eight plant species with red flowers were measured. The color loci occupied by these flowers in the bee color space was evaluated using the receptor noise-limited model. Four of the plant species have pure red flowers with low levels of chromatic contrast but high levels of negative L-receptor contrast. Finally, training experiments were performed in order to assess the role of achromatic cues in the detection and discrimination of red targets by B. dahlbomii. The results of the training experiments suggest that the bumblebee relies on achromatic contrast provided by the L-receptor to detect and discriminate red targets. These findings are discussed in the context of the evolutionary background under which the relationship between SATF species and their flower visitors may have evolved.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3