It's tough to be small: dependence of burrowing kinematics on body size

Author:

Che James1,Dorgan Kelly M.1

Affiliation:

1. University of California, Berkeley, Department of Integrative Biology, 3060 VLSB #3140, Berkeley, CA 94720, USA

Abstract

SUMMARY Burrowing marine infauna are morphologically diverse and range in size over several orders of magnitude. Whilst effects of ontogenetic and morphological differences on running, flying and swimming are relatively well understood, similar analyses of burrowing mechanics and kinematics are lacking. The polychaete Nereis virens Sars extends its burrow by fracture, using an eversible pharynx to exert force on the walls of the burrow. The resulting stress is amplified at the anterior tip of the burrow, which extends when the stress exceeds the fracture toughness of the material. Here we show that the polychaete Cirriformia moorei extends its burrow by a similar mechanism, but by using its hydrostatic skeleton rather than an eversible pharynx. Based on the dimensionless wedge number, which relates work of fracture to work to maintain body shape against the elasticity of sediment, we predicted that smaller worms would exhibit behaviors characteristic of tougher sediments and that scaling of kinematics would reflect decreasing difficulty in fracturing sediment with increasing body size. We found that smaller worms were relatively blunter and thicker, and had a greater variation of thickness than larger worms as they burrowed. Although these kinematic differences increase the stress amplification at the crack tip, smaller worms still generate lower stress intensity factors. The greater relative body thickness and shape changes of smaller worms are consistent with ontogenetic changes in forces exerted by earthworms, and are likely driven by the challenge of exerting enough stress to extend a crack with a small body size.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference27 articles.

1. The mathematical theory of equilibrium cracks in brittle fracture;Barenblatt,1962

2. Family Cirratulidae;Blake,1996

3. Bubble growth and rise in soft sediments;Boudreau;Geology,2005

4. Lattice-automaton bioturbation simulator (LABS): implementation for small deposit feeders;Choi;Comput. Geosci.,2002

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3