Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture

Author:

Watt F.M.1

Affiliation:

1. Imperial Cancer Research Fund, London, UK.

Abstract

Articular chondrocytes are known to be phenotypically unstable in culture. One condition that has been reported to suppress dedifferentiation is cultivation at high density on tissue-culture plastic. The aim of the experiments described here was to study the effect of seeding density on chondrocyte proliferation and 35SO4 incorporation, and on the types of collagen and proteoglycan synthesized. I found that cells seeded at low or high density reached the same final density at confluence, and that 35SO4 incorporation, while initially higher (per cell) in high-density cultures, fell under both conditions, reaching the same low level after 3 weeks. The proportion of cells expressing keratan sulphate fell in low- but not high-density cultures and the decline was not prevented by inhibition of cell division. In all the cultures cells expressing keratan sulphate tended to have a rounded morphology. After 21 days in culture, chondrocytes grown at high density expressed predominantly large proteoglycans that aggregated with hyaluronic acid, whereas in low-density cultures a smaller, non-aggregating form was also present. By 21 days in culture cells at both high and low density were expressing type I collagen, although the high-density cells also had an extensive extracellular matrix of type II collagen. These observations support the conclusion that high seeding density stabilizes the chondrocyte phenotype to a greater extent than low seeding density. They also suggest that enhanced dedifferentiation at low density may be due to cell spreading, rather than to selective proliferation of a phenotypically unstable subpopulation of cells.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3