Development and persistence of catecholaminergic neurons in cultured explants of fetal murine vagus nerves and bowel

Author:

Baetge G.1,Schneider K.A.1,Gershon M.D.1

Affiliation:

1. Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032.

Abstract

Transient catecholaminergic (TC) cells have been found to appear in the vagal pathway and bowel of fetal mice and rats. It has been proposed that these cells are migrating vagal crest-derived precursors of enteric neurons that lose their catecholaminergic properties when they terminally differentiate. In the current experiments, segments of fetal mouse gut were explanted before (day E9) TC cells or any neural markers could be detected in situ. Tyrosine hydroxylase (TH)-immunoreactive neurons developed in vitro in 4/12 such explants; therefore, cells with a catecholaminergic potential are present in the gut of at least some animals prior to the in situ expression of this phenotype. The neurogenic potential of cells in the vagal pathway was similarly tested by studying cultures of explanted vagus nerves (day E11). These studies revealed that neural precursors were present in the vagi and gave rise in vitro to neurons that displayed acetylcholinesterase (AChE) activity and neuron-specific enolase (NSE) immunoreactivity. A subset of these neural precursors were capable of migrating and formed satellite ganglia at a distance from the explants. Coincident expression of NSE and TH immunoreactivities was observed, indicating that at least some of the neurons that developed in vitro were derived from TC cells. Vagal TC cells, therefore, are neurogenic. Catecholaminergic cells did not disappear from cultured explants of vagus nerves or gut provided that these tissues contained TC cells at the time of explantation. Instead, catecholaminergic neurons developed and persisted in vitro for as long as cultures were maintained. These neurons contained aromatic L-amino acid decarboxylase as well as TH, NSE and neurofilament immunoreactivities. In contrast, if the bowel was explanted after the in situ disappearance of TC cells, catecholaminergic cells did not arise in the cultures. These experiments indicate that the period of time during which a catecholaminergic phenotype is expressed by neural precursors in the fetal vagal pathway and gut is not fixed, but can be changed by altering the environment of the cells as occurs when the bowel is grown in vitro; moreover, contact with non-neuronal cells within the bowel is not by itself sufficient to inactivate catecholaminergic expression. The nature of the signal responsible for loss of the catecholaminergic phenotype in situ remains to be determined; however, the persistence of catecholaminergic expression in vitro should facilitate the investigation of this signal.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Gut Motility;Pediatric Neurogastroenterology;2022

2. Development of Gut Motility;Pediatric Neurogastroenterology;2012-11-07

3. Sacral neural crest-derived cells enter the aganglionic colon of Ednrb−/− mice along extrinsic nerve fibers;The Journal of Comparative Neurology;2011-12-13

4. Development of the Enteric Nervous System;Fetal and Neonatal Physiology;2011

5. The role of neural activity in the migration and differentiation of enteric neuron precursors;Neurogastroenterology & Motility;2010-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3