Effects of tentacle amputation and regeneration on the morphology and activity of the olfactory center of the terrestrial slug Limax valentianus

Author:

Matsuo Ryota1,Kobayashi Suguru1,Tanaka Yoko1,Ito Etsuro1

Affiliation:

1. Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan

Abstract

SUMMARY The tentacles of pulmonates regenerate spontaneously following amputation. The regenerated tentacle is equipped with all the elements necessary for normal olfactory functioning, and the slugs can behave as well as they did before the tentacle amputation. However, it is not known what changes occur to the olfactory center procerebrum in the brain at the morphological and physiological levels. Here, we investigated the innervation of tentacular nerves into the procerebrum by examining the size of the terminal mass (input layer from tentacular nerves) of the procerebrum and also by staining afferent nerves immunohistochemically at 15, 58 and 75 days following unilateral amputation of the superior and inferior tentacles. The size of the terminal mass was significantly decreased, and the Phe-Met-Arg-Phe-NH2ergic (FMRFamidergic) afferent nerves disappeared by 15 days following the tentacle amputation. However, the size of the terminal mass had recovered substantially by 58 days, as the tentacle regenerated. The FMRFamidergic innervation into the cerebral ganglion was also restored by this time. An extended recovery (75 days), however, did not result in any further increase in the size of the terminal mass. We also recorded the local field potential (LFP) oscillation in the procerebrum. We found that the oscillatory frequency of the LFP had decreased at 15 days following the tentacle amputation but had recovered at 58 and 75 days. These results suggest that the amputation and regrowth of the tentacle are accompanied by the respective degeneration and re-innervation of olfactory nerves, and these changes in the innervation status affect the basal state of LFP oscillation.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3