Temporal integration of conflicting directional cues in sound localization

Author:

Reichert Michael S.12ORCID,Ronacher Bernhard2

Affiliation:

1. Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078 USA

2. Institut für Biologie, Abteilung Verhaltensphysiologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 18, 10099 Berlin, Germany

Abstract

Sound localization is fundamental to hearing. In nature, sound degradation and noise erode directional cues and can generate conflicting directional perceptions across different subcomponents of sounds. Little is known about how sound localization is achieved in the face of conflicting directional cues in non-human animals, although this is relevant for many species in which sound localization in noisy conditions mediates mate finding or predator avoidance. We studied the effects of conflicting directional cues in male grasshoppers, Chorthippus biguttulus, which orient towards signaling females. We presented playbacks varying in the number and temporal position of song syllables providing directional cues in the form of either time or amplitude differences between two speakers. Males oriented towards the speaker broadcasting a greater number of leading or louder syllables. For a given number of syllables providing directional information, syllables with timing differences at the song's beginning were weighted most heavily, while syllables with intensity differences were weighted most heavily when they were in the middle of the song. When timing and intensity cues conflicted, the magnitude and temporal position of each cue determined their relative influence on lateralization, and males sometimes quickly corrected their directional responses. We discuss our findings with respect to similar results from humans.

Funder

National Science Foundation

Deutsche Forschungsgemeinschaft

Leibniz-Gemeinschaft

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3