Aquatic surface respiration and swimming behaviour in adult and developing zebrafish exposed to hypoxia

Author:

Abdallah Sara J.1,Thomas Benjamin S.1,Jonz Michael G.1

Affiliation:

1. Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5

Abstract

Severe hypoxia elicits aquatic surface respiration (ASR) behaviour in many species of fish, where ventilation of the gills at the air-water interface improves O2 uptake and survival. ASR is an important adaptation that may have given rise to air breathing in vertebrates. The neural substrate of this behaviour, however, is not defined. We characterized ASR in developing and adult zebrafish (Danio rerio) to ascertain a potential role for peripheral chemoreceptors in initiation or modulation of this response. Adult zebrafish exposed to acute, progressive hypoxia (PO2 from 158 to 15 mmHg) performed ASR with a threshold of 30 mmHg, and spent more time at the surface as PO2 decreased. Acclimation to hypoxia attenuated ASR responses. In larvae, ASR behaviour was observed between 5 and 21 days postfertilization with a threshold of 16 mmHg. Zebrafish decreased swimming behaviour (i.e. distance, velocity and acceleration) as PO2 was decreased, with a secondary increase in behaviour near or below threshold PO2. In adults that underwent a 10-day intraperitoneal injection regime of 10 µg g−1 serotonin (5-HT) or 20 µg g−1 acetylcholine (ACh), an acute bout of hypoxia (15 mmHg) increased the time engaged in ASR by 5.5 and 4.9 times, respectively, compared to controls. Larvae previously immersed in 10 µmol l−1 5-HT or ACh also displayed an increased ASR response. Our results support the notion that ASR is a behavioural response that is reliant upon input from peripheral O2 chemoreceptors. We discuss implications for the role of chemoreceptors in the evolution of air breathing.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference80 articles.

1. O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2;Barrionuevo;Am. J. Physiol.,1999

2. Aerobic and anaerobic metabolism for the zebrafish, Danio rerio, reared under normoxic and hypoxic conditions and exposed to acute hypoxia during development;Barrionuevo;Braz. J. Biol.,2010

3. Behavioral responses of red hake, Urophycis chuss, to decreasing concentrations of dissolved oxygen;Bejda;Environ. Biol. Fish.,1987

4. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability;Bickler;Annu. Rev. Physiol.,2007

5. Carotid body mechanisms in acclimatization to hypoxia;Bisgard;Respir. Physiol.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3