In vivo evidence for short- and long-range cell communication in cranial neural crest cells

Author:

Teddy Jessica M.1,Kulesa Paul M.1

Affiliation:

1. Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA

Abstract

The proper assembly of craniofacial structures and the peripheral nervous system requires neural crest cells to emerge from the neural tube and navigate over long distances to the branchial arches. Cell and molecular studies have shed light on potential intrinsic and extrinsic cues, which, in combination,are thought to ensure the induction and specification of cranial neural crest cells. However, much less is known about how migrating neural crest cells interpret and integrate signals from the microenvironment and other neural crest cells to sort into and maintain the stereotypical pattern of three spatially segregated streams. Here, we explore the extent to which cranial neural crest cells use cell-to-cell and cell-environment interactions to pathfind. The cell membrane and cytoskeletal elements in chick premigratory neural crest cells were labeled in vivo. Three-dimensional reconstructions of migrating neural crest cells were then obtained using confocal static and time-lapse imaging. It was found that neural crest cells maintained nearly constant contact with other migrating neural crest cells, in addition to the microenvironment. Cells used lamellipodia or short, thin filopodia (1-2 μm wide) for local contacts (<20 μm). Non-local, long distance contact (up to 100 μm) was initiated by filopodia that extended and retracted, extended and tracked, or tethered two non-neighboring cells. Intriguingly, the cell-to-cell contacts often stimulated a cell to change direction in favor of a neighboring cell's trajectory. In summary, our results present in vivo evidence for local and long-range neural crest cell interactions, suggesting a possible role for these contacts in directional guidance.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference52 articles.

1. Abercrombie, M. (1970). Contact inhibition in tissue culture. In Vitro6, 128-142.

2. Anderson, D. J. (2000). Genes, lineages and the neural crest: a speculative review. Philos. Trans R. Soc. London Ser. B355,953-964.

3. Bard, J. B. and Hay, E. D. (1975). The behavior of fibroblasts from the developing avian cornea. Morphology and movement in situ and in vitro. J. Cell Biol.7, 400-418.

4. Birgbauer, E., Sechrist, J., Bronner-Fraser, M. and Fraser,S. (1995). Rhombomeric origin and rostrocaudal reassortment of neural crest cells revealed by intravital microscopy. Development121,935-945.

5. Cohen, S. M. (2003). Developmental biology:long-range signaling by touch. Nature426,503-504.

Cited by 197 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3