Why don't horseflies land on zebras?

Author:

Caro Tim12ORCID,Fogg Eva12,Stephens-Collins Tamasin12,Santon Matteo12,How Martin J.12

Affiliation:

1. School of Biological Sciences , 24 Tyndall Avenue , , Bristol BS8 1TQ , UK

2. University of Bristol , 24 Tyndall Avenue , , Bristol BS8 1TQ , UK

Abstract

ABSTRACTStripes deter horseflies (tabanids) from landing on zebras and, while several mechanisms have been proposed, these hypotheses have yet to be tested satisfactorily. Here, we investigated three possible visual mechanisms that could impede successful tabanid landings (aliasing, contrast and polarization) but additionally explored pattern element size employing video footage of horseflies around differently patterned coats placed on domestic horses. We found that horseflies are averse to landing on highly but not on lightly contrasting stripes printed on horse coats. We could find no evidence for horseflies being attracted to coats that better reflected polarized light. Horseflies were somewhat less attracted to regular than to irregular check patterns, but this effect was not large enough to support the hypothesis of disrupting optic flow through aliasing. More likely it is due to attraction towards larger dark patches present in the irregular check patterns, an idea bolstered by comparing landings to the size of dark patterns present on the different coats. Our working hypothesis for the principal anti-parasite features of zebra pelage are that their stripes are sharply outlined and thin because these features specifically eliminate the occurrence of large monochrome dark patches that are highly attractive to horseflies at close distances.

Funder

Royal Society

University of Bristol

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dazzle: surface patterns that impede interception;Biological Journal of the Linnean Society;2023-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3