Analysis of Connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart

Author:

Lampe Paul D.1,Cooper Cynthia D.1,King Timothy J.1,Burt Janis M.2

Affiliation:

1. Molecular Diagnostics Program, Fred Hutchinson Cancer Research Center and Department of Pathobiology, University of Washington, 1100 Fairview Avenue N., M5C800, P.O. Box 19024, Seattle, WA 98109, USA

2. Department of Physiology, University of Arizona, Tucson, AZ

Abstract

The functional consequences of Connexin43 (Cx43) phosphorylation remain largely unexplored. Using an antibody that specifically recognizes Cx43 phosphorylated at serine residues 325, 328 and/or 330 (pS325/328/330-Cx43), we show that labeling of this form of Cx43 as well as of total Cx43 is restricted to the intercalated disk region of normal ventricular tissue. In ischemic heart, significant relocalization of total Cx43 to the lateral edges of myocytes was evident; however pS325/328/330-Cx43 remained predominately at the intercalated disk. Western blots indicated a eightfold decrease in pS325/328/330-Cx43 in ischemic tissue. Peptide-binding- and competition-experiments indicated that our antibody mainly detected Cx43 phosphorylated at S328 and/or S330 in heart tissue. To evaluate how this change in Cx43 phosphorylation contributes to ischemia-induced downregulation of intercellular communication, we stably transfected Cx43-/- cells with a Cx43 construct in which serine residues 325, 328 and 330 had been mutated to alanine (Cx43-TM). Cx43-TM was not efficiently processed to isoforms that have been correlated with gap junction assembly. Nevertheless, Cx43-TM cells were electrically coupled, although development of coupling was delayed. Fully opened channels were only rarely observed in Cx43-TM cells, and Lucifer-Yellow-dye-coupling was significantly reduced compared with wild-type cells. These data suggest that phosphorylation of Cx43 at serine residues 325, 328 and/or 330 influences channel permselectivity and regulates the efficiency of gap junction assembly.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3