The influence of added mass on muscle activation and contractile mechanics during submaximal and maximal countermovement jumping in humans

Author:

Wade Logan1ORCID,Lichtwark Glen A.1ORCID,Farris Dominic J.12ORCID

Affiliation:

1. School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4067, Australia

2. Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK

Abstract

ABSTRACT Muscle contractile mechanics induced by the changing demands of human movement have the potential to influence our movement strategies. This study examined fascicle length changes of the triceps surae during jumping with added mass or increasing jump height to determine whether the chosen movement strategies were associated with relevant changes in muscle contractile properties. Sixteen participants jumped at sub-maximal and maximal intensities while total net work was matched via two distinct paradigms: (1) adding mass to the participant or (2) increasing jump height. Electromyography (EMG) and ultrasound analyses were performed to examine muscle activation, fascicle length and fascicle velocity changes of the triceps surae during jumping. Integrated EMG was significantly higher in the added mass paradigm with no difference in mean or maximal EMG, indicating that the muscle was activated for a significantly longer period of time but not activated to a greater intensity. Fascicle shortening velocity was slower with added mass compared than with increasing jump height; therefore, intrinsic force–velocity properties probably enabled increased force production. Improved fascicle contractile mechanics paired with a longer activation period probably produced a consistently larger fascicle force, enabling a greater impulse about the ankle joint. This may explain why previous research found that participants used an ankle-centred strategy for work production in the added mass paradigm and not in the jump height paradigm. The varied architecture of muscles within the lower limb may influence which muscles we choose to employ for work production under different task constraints.

Funder

Australian Postgraduate Award

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference46 articles.

1. Evidence for a vertebrate catapult: elastic energy storage in the plantaris tendon during frog jumping;Astley;Biol. Lett.,2011

2. The mechanics of elastic loading and recoil in anuran jumping;Astley;J. Exp. Biol.,2014

3. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J. R. Stat. Soc. Series B,1995

4. Why do people jump the way they do?;Bobbert;Exerc. Sport Sci. Rev.,2001

5. Humans adjust control to initial squat depth in vertical squat jumping;Bobbert;J. Appl. Physiol.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3