Mechanical energy fluctuations during hill walking: the effects of slope on inverted pendulum exchange

Author:

Gottschall Jinger S.1,Kram Rodger1

Affiliation:

1. Department of Integrative Physiology, University of Colorado,Boulder, CO 80309, USA

Abstract

SUMMARYHumans and other animals exchange gravitational potential energy (GPE) and kinetic energy (KE) of the center of mass during level walking. How effective is this energy exchange during downhill and uphill walking? Based on previous reports and our own reasoning, we expected that during downhill walking, the possibility for mechanical energy exchange would be enhanced and during uphill walking, the possibility for exchange would be reduced. We measured the fluctuations of the mechanical energies for five men and five women walking at 1.25 m s-1. Subjects walked on the level, downhill, and uphill on a force measuring treadmill mounted at 3°, 6° and 9°. We evaluated energy exchange during the single support period based on the GPE and KE fluctuation factors of phase relationship, relative magnitude and extent of symmetry. As expected, during level walking, the GPE and KE curves were out of phase, of similar magnitude, and nearly mirror images so that the fluctuations in combined (GPE+KE) energy were attenuated. During downhill walking, the fluctuations in the combined energy of the center of mass were smaller than those on the level, i.e. mechanical energy exchange was more effective. During uphill walking, the fluctuations in the combined energy of the center of mass were larger than those on the level, i.e. mechanical energy exchange was less effective. Mechanical energy exchange occurred during downhill, level and uphill walking, but it was most effective during downhill walking.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3