Transient activation of FOXN1 in keratinocytes induces a transcriptional programme that promotes terminal differentiation: contrasting roles of FOXN1 and Akt

Author:

Janes Sam M.1,Ofstad Tyler A.1,Campbell Douglas H.1,Watt Fiona M.1,Prowse David M.1

Affiliation:

1. Keratinocyte Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK

Abstract

The forkhead transcription factor FOXN1 is required for normal cutaneous and thymic epithelial development. Mutations in FOXN1 give rise to the nude phenotype in mice, rats and man. However, the genes that are regulated by FOXN1 are unknown. To investigate FOXN1 function we expressed an inducible form of the protein, FOXN1ER, that is activated by 4-hydroxytamoxifen in primary human epidermal keratinocytes. Transient activation of FOXN1 decreased the proportion of keratinocytes that formed actively growing clones attributable to stem cell founders and increased the number of abortive clones, without inducing apoptosis. Within 24 hours the majority of cells had initiated terminal differentiation, as assessed by involucrin expression. We performed a cDNA microarray experiment to analyse changes in the transcription of approximately 6000 genes. Following FOXN1 activation we detected increases of two fold or greater in the RNA levels of over 30 genes. Genes promoting growth arrest, survival and differentiation featured prominently and markers of early events in keratinocyte differentiation were also detected. Since one of the induced genes was Akt we investigated whether Akt played a role in terminal differentiation. Activation of PI 3-kinase but not Akt was necessary for FOXN1-induced differentiation. In reconstituted epidermis FOXN1 promoted early stages of terminal differentiation whereas Akt activation was sufficient to induce late stages, including formation of the cornified layers. These results establish a role for FOXN1 in initiation of terminal differentiation and implicate Akt in subsequent events.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3