Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways

Author:

Kily Layla J. M.1,Cowe Yuka C. M.1,Hussain Osman1,Patel Salma1,McElwaine Suzanne2,Cotter Finbarr E.2,Brennan Caroline H.1

Affiliation:

1. School of Biological and Chemical Sciences, Queen Mary, University of London,Mile End, London E1 4NS, UK

2. Centre for Haematology, Institute of Cell and Molecular Science, Barts &The London, Queen Mary's School of Medicine, 4 Newark Street, London E1 2AD,UK

Abstract

SUMMARY Addiction is a complex psychiatric disorder considered to be a disease of the brain's natural reward reinforcement system. Repeated stimulation of the`reward' pathway leads to adaptive changes in gene expression and synaptic organization that reinforce drug taking and underlie long-term changes in behaviour. The primitive nature of reward reinforcement pathways and the near universal ability of abused drugs to target the same system allow drug-associated reward and reinforcement to be studied in non-mammalian species. Zebrafish have proved to be a valuable model system for the study of vertebrate development and disease. Here we demonstrate that adult zebrafish show a dose-dependent acute conditioned place preference (CPP) reinforcement response to ethanol or nicotine. Repeated exposure of adult zebrafish to either nicotine or ethanol leads to a robust CPP response that persists following 3 weeks of abstinence and in the face of adverse stimuli, a behavioural indicator of the establishment of dependence. Microarray analysis using whole brain samples from drug-treated and control zebrafish identified 1362 genes that show a significant change in expression between control and treated individuals. Of these genes, 153 are common to both ethanol- and nicotine-treated animals. These genes include members of pathways and processes implicated in drug dependence in mammalian models, revealing conservation of neuro-adaptation pathways between zebrafish and mammals.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3