EPHB4 regulates chemokine-evoked trophoblast responses: a mechanism for incorporating the human placenta into the maternal circulation

Author:

Red-Horse Kristy12,Kapidzic Mirhan2,Zhou Yan2,Feng Kui-Tzu2,Singh Harbindar3,Fisher Susan J.1245

Affiliation:

1. Biomedical Sciences Graduate Program, University of California San Francisco,San Francisco, CA 94143, USA

2. Department of Cell and Tissue Biology, University of California San Francisco,San Francisco, CA 94143, USA

3. Department of Physiology, Universiti Sains Malaysia, Kelantan, Malaysia

4. Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143, USA

5. Department of Anatomy, University of California San Francisco, San Francisco,CA 94143, USA

Abstract

In humans, fetal cytotrophoblasts leave the placenta and enter the uterine wall, where they preferentially remodel arterioles. The fundamental mechanisms that govern these processes are largely unknown. Previously, we have shown that invasive cytotrophoblasts express several chemokines, as well as the receptors with which they interact. Here, we report that these ligand-receptor interactions stimulate cytotrophoblast migration to approximately the same level as a growth factor cocktail that includes serum. Additionally,cytotrophoblast commitment to uterine invasion was accompanied by rapid downregulation of EPHB4, a transmembrane receptor associated with venous identity, and upregulation of ephrin B1. Within the uterine wall, the cells also upregulated expression of ephrin B2, an EPH transmembrane ligand that is associated with arterial identity. In vitro cytotrophoblasts avoided EPHB4-coated substrates; upon co-culture with 3T3 cells expressing this molecule, their migration was significantly inhibited. As to the mechanisms involved, cytotrophoblast interactions with EPHB4 downregulated chemokine-induced but not growth factor-stimulated migration. We propose that EPHB4/ephrin B1 interactions generate repulsive signals that direct cytotrophoblast invasion toward the uterus, where chemokines stimulate cytotrophoblast migration through the decidua. When cytotrophoblasts encounter EPHB4 expressed by venous endothelium, ephrin B-generated repulsive signals and a reduction in chemokine-mediated responses limit their interaction with veins. When they encounter ephrin B2 ligands expressed in uterine arterioles,migration is permitted. The net effect is preferential cytotrophoblast remodeling of arterioles, a hallmark of human placentation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3