The evolution of recovery from desiccation stress in laboratory-selected populations ofDrosophila melanogaster

Author:

Folk Donna G.1,Bradley Timothy J.1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA

Abstract

SUMMARYWe examined the capacity for physiological recovery from the effects of desiccation in five replicate populations of Drosophila melanogasterthat have been selected for enhanced desiccation resistance (D populations)and in five replicate control populations (C populations). The capacity to recover was signified by the ability to restore three somatic components,namely whole-body water, dry mass and sodium content, all of which are reduced during desiccation. Throughout a period of recovery following a bout of desiccation, the flies were offered one of three fluids: distilled water,saline solution, or saline+sucrose solution. Our findings indicate that, when allowed to recover on saline+sucrose solution, D populations have the capacity to restore water at a greater rate than C populations and are able to fully restore dry mass and sodium content to the levels observed in non-desiccated,hydrated D flies. When provided with this same solution during recovery, C flies are unable to restore dry mass and are faced with an elevated sodium load. Desiccation resistance of the flies subsequent to recovery was also examined. We provide evidence that the greatest desiccation resistance in the D populations is associated with the restoration of all three somatic components, suggesting that not only water content, but also dry mass and sodium, may contribute to the enhanced desiccation resistance that has evolved in these populations.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3