GTP-gamma-S increases the duration of backward swimming behavior and the calcium action potential in marine Paramecium

Author:

Bernal J.1,Kelsey A. M.1,Ehrlich B. E.1

Affiliation:

1. Department of Medicine, University of Connecticut Health Center, Farmington 06032.

Abstract

Behavioral and electrophysiological experiments were made to examine the hypothesis that G-proteins modulate the voltage-dependent calcium channel in the marine ciliate Paramecium calkinsi. It was found that guanosine-5′-O-(3-thiotriphosphate) (GTP-gamma-S), an analogue of GTP that binds to and activates G-proteins, increased the duration of backward swimming behavior in reversibly permeabilized Paramecium in an irreversible and concentration-dependent manner. At 1 mumol l-1 GTP-gamma-S, the duration of backward swimming behavior was increased fivefold. Other nucleotides and related compounds did not have a significant effect on the backward swimming behavior. To evaluate whether the behavioral effects were due to ion channel modulation, the calcium action potential in intact Paramecium was monitored before and after guanine nucleotide injection. Within 5 min after the injection of GTP-gamma-S or GTP into the cell, the duration of the calcium action potential was prolonged at least threefold. Like the behavioral response, the GTP-gamma-S effect on the calcium action potential duration was irreversible, whereas the effect of GTP began to decay after 6 min. GDP-beta-S, which binds to and inactivates G-proteins, markedly reduced the calcium action potential within 5 min after injection. These results support the hypothesis that the voltage-dependent calcium channels present in Paramecium are modulated by GTP-binding proteins.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3