Localisation and function of key axonemal microtubule inner proteins and dynein docking complex members reveal extensive diversity among vertebrate motile cilia

Author:

Lu Hao1,Twan Wang Kyaw2,Ikawa Yayoi2,Khare Vani1,Mukherjee Ishita34,Schou Kenneth Bødtker5,Chua Kai Xin1,Aqasha Adam1,Chakrabarti Saikat34,Hamada Hiroshi267,Roy Sudipto18ORCID

Affiliation:

1. Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos 1 , 61 Biopolis Drive , Singapore 138673

2. RIKEN Centre for Biosystems Dynamics Research 2 Laboratory for Organismal Patterning , , 2-2-3 Minatojima-minamimachi, Chuo-Ku, Kobe 650-0005 , Japan

3. Translational Research Unit of Excellence 3 , Structural Biology and Bioinformatics Division , , Kolkata 700091 , India

4. Council for Scientific and Industrial Research - Indian Institute of Chemical Biology 3 , Structural Biology and Bioinformatics Division , , Kolkata 700091 , India

5. The Danish Cancer Society Research Centre, Danish Cancer Institute 4 , Strandboulevarden 49, 2100 Copenhagen , Denmark

6. National Centre for Biological Sciences, Tata Institute of Fundamental Research 5 , Bellary Road, Bengaluru 560065 , India

7. Trivedi School of Biosciences, Ashoka University 6 , Sonepat, 131029 , India

8. Yong Loo Ling School of Medicine, National University of Singapore 7 Department of Paediatrics , , 1E Kent Ridge Road , Singapore 119288

Abstract

ABSTRACT Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Council of Scientific and Industrial Research, India

Agency for Science, Technology and Research

Publisher

The Company of Biologists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3