DIG-1, a novel giant protein, non-autonomously mediates maintenance of nervous system architecture

Author:

Bénard Claire Y.1,Boyanov Alexander1,Hall David H.2,Hobert Oliver1

Affiliation:

1. Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.

2. Department of Neuroscience, Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

Abstract

Dedicated mechanisms exist to maintain the architecture of an animal's nervous system after development is completed. To date, three immunoglobulin superfamily members have been implicated in this process in the nematode Caenorhabditis elegans: the secreted two-Ig domain protein ZIG-4, the FGF receptor EGL-15 and the L1-like SAX-7 protein. These proteins provide crucial information for neuronal structures, such as axons, that allows them to maintain the precise position they acquired during development. Yet, how widespread this mechanism is throughout the nervous system, and what other types of factors underlie such a maintenance mechanism, remains poorly understood. Here, we describe a new maintenance gene, dig-1, that encodes a predicted giant secreted protein containing a large number of protein interaction domains. With 13,100 amino acids, the DIG-1 protein is the largest secreted protein identifiable in any genome database. dig-1functions post-developmentally to maintain axons and cell bodies in place within axonal fascicles and ganglia. The failure to maintain axon and cell body position is accompanied by defects in basement membrane structure, as evidenced by electron microscopy analysis of dig-1 mutants. Expression pattern and mosaic analysis reveals that dig-1 is produced by muscles to maintain nervous system architecture, demonstrating that dig-1 functions non-autonomously to preserve the proper layout of neural structures. We propose that DIG-1 is a component of the basement membrane that mediates specific contacts between cellular surfaces and their environment through the interaction with a cell-type specific set of other maintenance factors.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3