Anteroposterior and dorsoventral patterning are coordinated by an identical patterning clock

Author:

Hashiguchi Megumi1,Mullins Mary C.1

Affiliation:

1. Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1211 BRBII/III, 421 Curie Blvd., Philadelphia, PA 19104-6058, USA.

Abstract

Establishment of the body plan in vertebrates depends on the temporally coordinated patterning of tissues along the body axes. We have previously shown that dorsoventral (DV) tissues are temporally patterned progressively from anterior to posterior by a BMP signaling pathway. Here we report that DV patterning along the zebrafish anteroposterior (AP) axis is temporally coordinated with AP patterning by an identical patterning clock. We altered AP patterning by inhibiting or activating FGF, Wnt or retinoic acid signaling combined with inhibition of BMP signaling at a series of developmental time points, which revealed that the temporal progression of DV patterning is directly coordinated with AP patterning. We investigated how these signaling pathways are integrated and suggest a model for how DV and AP patterning are temporally coordinated. It has been shown that in Xenopus dorsal tissues FGF and Wnt signaling quell BMP signaling by degrading phosphorylated (P) Smad1/5, the BMP pathway signal transducer, via phosphorylation of the Smad1/5 linker region. We show that in zebrafish FGF/MAPK, but not Wnt/GSK3, phosphorylation of the Smad1/5 linker region localizes to a ventral vegetal gastrula region that could coordinate DV patterning with AP patterning ventrally without degrading P-Smad1/5. Furthermore, we demonstrate that alteration of the MAPK phosphorylation sites in the Smad5 linker causes precocious patterning of DV tissues along the AP axis during gastrulation. Thus, DV and AP patterning are intimately coordinated to allow cells to acquire both positional and temporal information simultaneously.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3