Cryptic O2–-generating NADPH oxidase in dendritic cells

Author:

Elsen Sylvie1,Doussière Jacques1,Villiers Christian L.2,Faure Mathias2,Berthier Rolande2,Papaioannou Anne2,Grandvaux Nathalie1,Marche Patrice N.2,Vignais Pierre V.1

Affiliation:

1. Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF)

2. Laboratoire d'Immunochimie (U548 INSERM-CEA-UJF), Département Réponse et Dynamique Cellulaires, CEA-Grenoble, 38054 Grenoble CEDEX 9, France

Abstract

All the components of the O2–-generating NADPH oxidase typically found in neutrophils, namely a membrane-bound low potential flavocytochrome b and oxidase activation factors of cytosolic origin, are immunodetectable in murine dendritic cells (DCs). However, in contrast to neutrophils, DCs challenged with phorbol myristate acetate (PMA) can barely mount a significant respiratory burst. Nevertheless, DCs generate a substantial amount of O2– in the presence of PMA following preincubation with pro-inflammatory ligands such as lipopolysaccharide and pansorbin, and to a lesser extent with anti-CD40 or polyinosinic polycytidylic acid. We found that the virtual lack of the oxidase response to PMA alone is specifically controlled in DCs. Through the use of homologous and heterologous cell-free systems of oxidase activation, we showed the following: (1) a NADPH oxidase inhibitory factor is located in DC membranes; it exerts its effect on oxidase activation and not on the activated oxidase. (2) The inhibition is relieved by pretreatment of DC membranes with β-octylglucoside (β-OG). (3) The β-OG-extracted inhibitory factor prevents the activation of neutrophil oxidase. (4) The inhibitory activity is lost after treatment of DC membranes with proteinase K or heating, which points to the protein nature of the inhibitory factor. Overall, these data indicate that the O2–-generating oxidase in DCs is cryptic, owing to the presence of a membrane-bound inhibitor of protein nature that prevents oxidase activation. The inhibition is relieved under specific conditions, including a prolonged contact of DCs with pro-inflammatory ligands from microbial origin, allowing a substantial production of O2–, which may contribute to the response of DCs to a microbial exposure.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3