Effect of pathogenic mis-sense mutations in lamin A on its interaction with emerin in vivo

Author:

Holt Ian1,Östlund Cecilia2,Stewart Colin L.3,Man Nguyen thi1,Worman Howard J.2,Morris Glenn E.1

Affiliation:

1. Biochemistry Group, North East Wales Institute, Wrexham LL11 2AW, UK

2. Departments of Medicine and of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA

3. Laboratory of Cancer and Developmental Biology, NCI-FCRDC, PO Box B,Frederick, MD 21702-1201, USA

Abstract

Mutations in lamin A/C can cause Emery-Dreifuss muscular dystrophy (EDMD)or a related cardiomyopathy (CMD1A). Using transfection of lamin-A/C-deficient fibroblasts, we have studied the effects of nine pathogenic mutations on the ability of lamin A to assemble normally and to localize emerin normally at the nuclear rim.Five mutations in the rod domain (L85R, N195K, E358K, M371K and R386K)affected the assembly of the lamina. With the exception of mutant L85R, all rod domain mutants induced the formation of large nucleoplasmic foci in about 10% of all nuclei. The presence of emerin in these foci suggests that the interaction of lamin A with emerin is not directly affected by the rod domain mutations. Three mutations in the tail region, R453W, W520S and R527P, might directly affect emerin binding by disrupting the structure of the putative emerin-binding site, because mutant lamin A localized normally to the nuclear rim but its ability to trap emerin was impaired. Nucleoplasmic foci rarely formed in these three cases (<2%) but, when they did so, emerin was absent,consistent with a direct effect of the mutations on emerin binding. The lipodystrophy mutation R482Q, which causes a different phenotype and is believed to act through an emerin-independent mechanism, was indistinguishable from wild-type in its localization and its ability to trap emerin at the nuclear rim.The novel hypothesis suggested by the data is that EDMD/CMD1A mutations in the tail domain of lamin A/C work by direct impairment of emerin interaction,whereas mutations in the rod region cause defective lamina assembly that might or might not impair emerin capture at the nuclear rim. Subtle effects on the function of the lamina-emerin complex in EDMD/CMD1A patients might be responsible for the skeletal and/or cardiac muscle phenotype.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3