The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins

Author:

Boutté Yohann1,Crosnier Marie-Thérèse1,Carraro Nicola2,Traas Jan2,Satiat-Jeunemaitre Béatrice1

Affiliation:

1. Laboratoire de Dynamique de la Compartimentation Cellulaire, Institut des Sciences du Végétal, CNRS UPR2355, 9 Gif-sur-Yvette CEDEX, France

2. Laboratoire de Biologie Cellulaire, INRA, Route de Saint Cyr, 78026 Versailles CEDEX, France

Abstract

The PIN-FORMED (PIN) proteins are plasma-membrane-associated facilitators of auxin transport. They are often targeted to one side of the cell only through subcellular mechanisms that remain largely unknown. Here, we have studied the potential roles of the cytoskeleton and endomembrane system in the localisation of PIN proteins. Immunocytochemistry and image analysis on root cells from Arabidopsis thaliana and maize showed that 10-30% of the intracellular PIN proteins mapped to the Golgi network, but never to prevacuolar compartments. The remaining 70-90% were associated with yet to be identified structures. The maintenance of PIN proteins at the plasma membrane depends on a BFA-sensitive machinery, but not on microtubules and actin filaments. The polar localisation of PIN proteins at the plasmamembrane was not reflected by any asymmetric distribution of cytoplasmic organelles. In addition, PIN proteins were inserted in a symmetrical manner at both sides of the cell plate during cytokinesis. Together, the data indicate that the localisation of PIN proteins is a postmitotic event, which depends on local characteristics of the plasma membrane and its direct environment. In this context, we present evidence that microtubule arrays might define essential positional information for PIN localisation. This information seems to require the presence of an intact cell wall.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference43 articles.

1. Benjamins, R. (2004). Functional analysis of the PINOID protein kinase in Arabidopsis thaliana. Thesis, University of Leiden, NL.

2. Baluska, F., Hlavacka, A., Samaj, J., Palme, K., Robinson, D. G., Matoh, T., McCurdy, D. W., Menzel, D. and Volkmann, D. (2002). F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant Physiol.130, 422-431.

3. Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G. and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell115, 591-602.

4. Boevink, P., Oparka, K., Santa Cruz, S., Martin, B., Betteridge, A. and Hawes, C. (1998). Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J.15, 441-447.

5. Bolte, S., Brown, S. and Satiat-Jeunemaitre, B. (2004a). The N-myristoylated Rab-GTPase m-Rabmc is involved in post-Golgi trafficking events to the lytic vacuole in plant cells. J. Cell Sci.117, 943-954.

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3