Neuronal LRP4 directs the development, maturation and cytoskeletal organization of Drosophila peripheral synapses

Author:

DePew Alison T.1ORCID,Bruckner Joseph J.2ORCID,O'Connor-Giles Kate M.34ORCID,Mosca Timothy J.1ORCID

Affiliation:

1. Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University 1 Department of Neuroscience , , Philadelphia, PA 19107 , USA

2. University of Wisconsin-Madison 2 Cell and Molecular Biology Training Program , , Madison, WI 53706 , USA

3. Brown University 3 Department of Neuroscience , , Providence, RI 02912 , USA

4. Carney Institute for Brain Science, Brown University 4 , Providence, RI 02912 , USA

Abstract

ABSTRACT Synaptic development requires multiple signaling pathways to ensure successful connections. Transmembrane receptors are optimally positioned to connect the synapse and the rest of the neuron, often acting as synaptic organizers to synchronize downstream events. One such organizer, the LDL receptor-related protein LRP4, is a cell surface receptor that has been most well-studied postsynaptically at mammalian neuromuscular junctions. Recent work, however, identified emerging roles, but how LRP4 acts as a presynaptic organizer and the downstream mechanisms of LRP4 are not well understood. Here, we show that LRP4 functions presynaptically at Drosophila neuromuscular synapses, acting in motoneurons to instruct pre- and postsynaptic development. Loss of presynaptic LRP4 results in multiple defects, impairing active zone organization, synapse growth, physiological function, microtubule organization, synaptic ultrastructure and synapse maturation. We further demonstrate that LRP4 promotes most aspects of presynaptic development via a downstream SR-protein kinase, SRPK79D. These data demonstrate a function for presynaptic LRP4 as a peripheral synaptic organizer, highlight a downstream mechanism conserved with its CNS function in Drosophila, and underscore previously unappreciated but important developmental roles for LRP4 in cytoskeletal organization, synapse maturation and active zone organization.

Funder

National Institutes of Health

Pennsylvania Department of Health

Alfred P. Sloan Foundation

Whitehall Foundation

Thomas Jefferson University

Publisher

The Company of Biologists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3