Rab5a GTPase regulates fusion between pathogen-containing phagosomes and cytoplasmic organelles in human neutrophils

Author:

Perskvist Nasrin1,Roberg Karin2,Kulyté Agné1,Stendahl Olle1

Affiliation:

1. Department of Medical Microbiology, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden

2. Department of Pathology II, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden

Abstract

Biogenesis of phagolysosomes proceeds through a sequential series of interactions with endocytic organelles, a process known to be regulated by Rab and SNARE proteins. The molecular mechanisms underlying phagosome maturation in neutrophils are, however, not clearly understood. We investigated fusion between phagosomes containing the intracellular pathogen Mycobacterium tuberculosis versus the extracellular pathogen Staphylococcus aureus (designated MCP for mycobacteria-containing phagosome and SCP for S. aureus-containing phagosome) and cytoplasmic compartments in human neutrophils. Western blot analysis of phagosomes isolated after internalisation revealed that lactoferrin (a constituent of secondary granules) and LAMP-1 were incorporated into both SCP and MCP, whereas hck(marker of azurophil granules) interacted solely with SCP. The subcellular distribution of the proteins Rab5a and syntaxin-4 suggested a role in docking of granules and/or endosomes to the target membrane in the neutrophil. We observed that during phagocytosis, Rab5a in GTP-bound form interacted with syntaxin-4 on the membrane of MCP and were retained for up to 90 minutes,whereas the complex was recruited to the SCP within 5 minutes but was selectively depleted from these vacuoles after 30 minutes of phagocytosis. Downregulation of Rab5a by antisense oligonucleotides efficiently reduced the synthesis of Rab5a, the binding of syntaxin-4 to MCP and SCP and the capacity for fusion exhibited by the pathogen-containing phagosomes, but it had no effect on bacteria internalisation. These data indicate that the difference in granule fusion is correlated with a difference in the association of Rab5a and syntaxin-4 with the phagosomes. Intracellular pathogen-containing phagosomes retain Rab5a and syntaxin-4, whereas extracellular pathogen-containing phagosomes bind briefly to this complex. These results also identified Rab5a as a key regulator of phagolysosome maturation in human neutrophils.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3