The molecular basis for the autoregulation of calponin by isoform-specific C-terminal tail sequences

Author:

Burgstaller Gerald1,Kranewitter Wolfgang J.1,Gimona Mario1

Affiliation:

1. Institute of Molecular Biology, Department of Cell Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria

Abstract

The three genetic isoforms of calponin (CaP), h1, h2 and acidic, are distinguished mostly by their individual C-terminal tail sequences. Deletion of these sequences beyond the last homologous residue Cys273 increases actin filament association for all three isoforms, indicating a negative regulatory role for the unique tail regions. We have tested this hypothesis by constructing a series of deletion and substitution mutants for all three CaP isoforms. Here we demonstrate that the C-terminal sequences regulate actin association by altering the function of the second actin-binding site, ABS2, in CaP comprised of the three 29-residue calponin repeats. Removal of the inhibitory tail resulted in an increased binding and bundling activity, and caused a prominent re-localization of h2 CaP from the peripheral actin network to the central actin stress fibers in transfected A7r5 smooth muscle cells. Domain-swap experiments demonstrated that the tail sequence of h2 CaP can downregulate cytoskeletal association efficiently in all three CaP isoforms, whereas the tail of the smooth-muscle-specific h1 CaP variant had little effect. Site-directed mutagenesis further revealed that the negatively charged residues within the tail region are essential for this regulatory function. Finally we demonstrate that the tail sequences regulate the second actin-binding site (ABS2) and not the strong actin-binding ABS1 region in CaP.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3