Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells

Author:

Jan Taha Adnan12,Chai Renjie1,Sayyid Zahra Nabi1,van Amerongen Renée23,Xia Anping1,Wang Tian1,Sinkkonen Saku Tapani1,Zeng Yi Arial23,Levin Jared Ruben1,Heller Stefan14,Nusse Roel23,Cheng Alan Gi-Lun1

Affiliation:

1. Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.

2. Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.

3. Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

4. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Abstract

Permanent hearing loss is caused by the irreversible damage of cochlear sensory hair cells and nonsensory supporting cells. In the postnatal cochlea, the sensory epithelium is terminally differentiated, whereas tympanic border cells (TBCs) beneath the sensory epithelium are proliferative. The functions of TBCs are poorly characterized. Using an Axin2lacZ Wnt reporter mouse, we found transient but robust Wnt signaling and proliferation in TBCs during the first 3 postnatal weeks, when the number of TBCs decreases. In vivo lineage tracing shows that a subset of hair cells and supporting cells is derived postnatally from Axin2-expressing TBCs. In cochlear explants, Wnt agonists stimulated the proliferation of TBCs, whereas Wnt inhibitors suppressed it. In addition, purified Axin2lacZ cells were clonogenic and self-renewing in culture in a Wnt-dependent manner, and were able to differentiate into hair cell-like and supporting cell-like cells. Taken together, our data indicate that Axin2-positive TBCs are Wnt responsive and can act as precursors to sensory epithelial cells in the postnatal cochlea.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3