A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain

Author:

Mosquera L.1,Forristall C.1,Zhou Y.1,King M.L.1

Affiliation:

1. Department of Cell Biology and Anatomy (R-124), University of Miami School of Medicine, FL 33101.

Abstract

mRNAs concentrated in specific regions of the oocyte have been found to encode determinants that specify cell fate. We show that an intermediate filament fraction isolated from Xenopus stage VI oocytes specifically contains, in addition to Vg1 RNA, a new localized mRNA, Xcat-2. Like Vg1, Xcat-2 is found in the vegetal cortical region, is inherited by the vegetal blasomeres during development, and is degraded very early in development. Sequence analysis suggests that Xcat-2 encodes a protein that belongs to the CCHC RNA-binding family of zinc finger proteins. Interestingly, the closest known relative to Xcat-2 in this family is nanos, an RNA localized to the posterior pole of the Drosophila oocyte whose protein product suppresses the translation of the transcription factor hunchback. The localized and maternally restricted expression of Xcat-2 RNA suggests a role for its protein in setting up regional differences in gene expression that occur early in development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference60 articles.

1. The structure of histone H1 and its location in chromatin.;Allan;Nature,1980

2. Zinc fingers and other metal-binding domains.;Berg;J. Biol. Chem,1990

3. A gradient of poly(A)+RNA sequences in Xenopus laevis eggs and embryos.;Carpenter;Dev. Biol,1982

4. Evidence for a highly selective RNA transport system and its role in establishing the dorsoventral axis of the Drosophila egg.;Cheung;Development,1992

5. How embryos work.;Davidson;Development,1990

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3