Developmental origin of segmental identity in the leech mesoderm

Author:

Gleizer L.1,Stent G.S.1

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley 94720.

Abstract

Segmentation in the leech embryo is established by a stereotyped cell lineage. Each of the 32 segments arises from homologous, bilaterally symmetrical complements of mesodermal and ectodermal blast cell clones. Although segments are homologous, they are regionally differentiated along the longitudinal body axis. Various segments display idiosyncratic ensembles of features, which constitute discrete segmental identities. The differentiation of segment-specific features, such as the mesoderm-derived nephridia, genital primordia and identified Small Cardioactive Peptide immunoreactive neurons, reflects a diversification of the developmental fates of homologous blast cell clones. We have investigated whether segment-specific differentiation of homologous mesodermal blast cell clones depends on cell-intrinsic mechanisms (based on the cells' lineage history) or on cell-extrinsic mechanisms (based on the cells' interactions with their environment) in embryos of Theromyzon rude. For this purpose, we first mapped the segment-specific fates of individual mesodermal blast cell clones, and then induced mesodermal clones to take part in the formation of segments for which they are not normally destined. Two types of ectopic segmental position were produced: one in which a mesodermal blast cell clone was out of register with all other consegmental cells and one in which a mesodermal blast cell clone was out of register with its overlying ectoderm, but was in normal register with the mesoderm and ectoderm on the other side of the embryo. Mesodermal blast cell clones that developed in either type of ectopic segmental position gave rise to segment-specific features characteristic of their original segmental fates rather than their ectopic positions. Thus, the development of segmental identity in the leech mesoderm is attributable to a cell-intrinsic mechanism and, either before or soon after their birth, mesodermal blast cells are autonomously committed to segment-specific fates.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3