Tenascin-C at a glance

Author:

Midwood Kim S.1,Chiquet Matthias2,Tucker Richard P.3,Orend Gertraud4567ORCID

Affiliation:

1. The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK

2. Department of Orthodontics and Dentofacial Orthopedics, Medical Faculty, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland

3. Department of Cell Biology and Human Anatomy, University of California at Davis, Davis CA 95616-8643, USA

4. Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MN3T) team, 3 av. Molière, Strasbourg 67200, France

5. Université de Strasbourg, Strasbourg 67000, France

6. LabEx Medalis, Université de Strasbourg, Strasbourg 67000, France

7. Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France

Abstract

ABSTRACT Tenascin-C (TNC) is a hexameric, multimodular extracellular matrix protein with several molecular forms that are created through alternative splicing and protein modifications. It is highly conserved amongst vertebrates, and molecular phylogeny indicates that it evolved before fibronectin. Tenascin-C has many extracellular binding partners, including matrix components, soluble factors and pathogens; it also influences cell phenotype directly through interactions with cell surface receptors. Tenascin-C protein synthesis is tightly regulated, with widespread protein distribution in embryonic tissues, but restricted distribution of tenascin-C in adult tissues. Tenascin-C is also expressed de novo during wound healing or in pathological conditions, including chronic inflammation and cancer. First described as a modulator of cell adhesion, tenascin-C also directs a plethora of cell signaling and gene expression programs by shaping mechanical and biochemical cues within the cellular microenvironment. Exploitment of the pathological expression and function of tenascin-C is emerging as a promising strategy to develop new diagnostic, therapeutic and bioengineering tools. In this Cell Science at a Glance article and the accompanying poster we provide a succinct and comprehensive overview of the structural and functional features of tenascin-C and its potential roles in developing embryos and under pathological conditions.

Funder

Institut National du Cancer

Ligue Contre le Cancer

Arthritis Research UK

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 328 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3