Power Requirements for Horizontal Flight in the Pigeon Columba Livia

Author:

PENNYCUICK C. J.1

Affiliation:

1. Department of Zoology, University of Bristol; Department of Zoology, University College Nairobi, P.O. Box 30197, Nairobi, Kenya

Abstract

1. Certain measurements made on pigeons flying horizontally in a wind-tunnel are described. 2. A method, based on helicopter theory, for calculating the power required to fly at any given speed is explained. Induced, profile and parasite power are calculated separately. 3. It is concluded that the pigeon can fly horizontally without incurring an oxygen debt at speeds from 3 to 16 m./sec. The minimum power speed is 8-9 m./sec. The maximum continuous power output is estimated to be 10.5 W., and the corresponding oxygen consumption about 170 ml./min. The maximum (sprint) power is estimated to be 20.4 W., from observations of vertical climb after take-off. 4. The estimated best lift: drag ratio in horizontal flight is 5.9, giving a range of 11.8 km./g. of fat oxidized for a 400 g. pigeon. 5. It is argued from considerations of structural strength that the early part of the downstroke is used mainly to impart angular velocity to the wing, and that air loads are only developed after most of the angular acceleration has taken place. The tension in the pectoralis insertion may exceed 60% of the breaking tension in fast horizontal flight. 6. The power calculation was repeated for the ruby-throated hummingbird, using published data. Estimated best range is about 900 km./g. of fat oxidized, achieved at 9 m./sec. The corresponding effective lift:drag ratio is 4.1. 7. The variation of power required and power available with size is considered, and the effect on hovering and take-off performance of different birds deduced. 8. Performance estimates for the pigeon and ruby-throated hummingbird are very poor by engineering standards, but consistent with these birds' known abilities, and are in general agreement with estimates of effective lift:drag ratio derived from published data on other species.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3