The impulse response of optic flow-sensitive descending neurons to roll m-sequences

Author:

Leibbrandt Richard1ORCID,Nicholas Sarah1ORCID,Nordström Karin12ORCID

Affiliation:

1. Neuroscience, Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, 5001 Adelaide, SA, Australia

2. Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden

Abstract

ABSTRACT When animals move through the world, their own movements generate widefield optic flow across their eyes. In insects, such widefield motion is encoded by optic lobe neurons. These lobula plate tangential cells (LPTCs) synapse with optic flow-sensitive descending neurons, which in turn project to areas that control neck, wing and leg movements. As the descending neurons play a role in sensorimotor transformation, it is important to understand their spatio-temporal response properties. Recent work shows that a relatively fast and efficient way to quantify such response properties is to use m-sequences or other white noise techniques. Therefore, here we used m-sequences to quantify the impulse responses of optic flow-sensitive descending neurons in male Eristalis tenax hoverflies. We focused on roll impulse responses as hoverflies perform exquisite head roll stabilizing reflexes, and the descending neurons respond particularly well to roll. We found that the roll impulse responses were fast, peaking after 16.5–18.0 ms. This is similar to the impulse response time to peak (18.3 ms) to widefield horizontal motion recorded in hoverfly LPTCs. We found that the roll impulse response amplitude scaled with the size of the stimulus impulse, and that its shape could be affected by the addition of constant velocity roll or lift. For example, the roll impulse response became faster and stronger with the addition of excitatory stimuli, and vice versa. We also found that the roll impulse response had a long return to baseline, which was significantly and substantially reduced by the addition of either roll or lift.

Funder

US Air Force Office of Scientific Research

Australian Research Council

Flinders Foundation

Flinders University

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3