Seismic signal production in a wolf spider: parallel versusserial multi-component signals

Author:

Elias Damian O.12,Lee Norman1,Hebets Eileen A.3,Mason Andrew C.1

Affiliation:

1. Division of Life Sciences, Integrative Behaviour and Neuroscience,University of Toronto at Scarborough, Ontario, M1C 1A4, Canada

2. Departments of Zoology and Botany, University of British Columbia,Vancouver, V6T 1Z4, Canada

3. School of Biological Sciences, University of Nebraska, Lincoln, NE 68588,USA

Abstract

SUMMARY Animal signals can consist of multiple parts within or across sensory modalities (multi-component signals or multimodal signals). While recent work has focused on multimodal signals, the production, processing and evolution of multi-component signals has received considerably less attention. Here, using synchronous high-speed video and laser vibrometer recordings followed by experimental manipulations of putative sound-producing structures, we explored the mechanisms of seismic signal production in the courtship display of Schizocosa stridulans Stratton. Two types of seismic courtship signals were observed: `rev' and `idle' signals. Revs consist of a high-frequency component produced by flexions of the male pedipalp(stridulation) simultaneous with a low-frequency component produced by movements of the abdomen (tremulation). This multi-component signal is produced by independent structures and represents a parallel multi-component display. By contrast, idle displays consist of a high-intensity component produced by drumming of the forelegs on the substrate (percussion) followed by a high-frequency component produced by flexions of the male pedipalp(stridulation). While the components of the idle display are also produced by independent structures, the leg drumming and palp flexions occur serially and do not overlap in time. We discuss the selective pressures that may drive the evolution of multiple sound-producing structures as well as the selective pressures that drive the evolution of parallel versus serial multi-component signals.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3