Non-cell-autonomously coordinated organ size regulation in leaf development

Author:

Kawade Kensuke1,Horiguchi Gorou2,Tsukaya Hirokazu13

Affiliation:

1. Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

2. Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.

3. National Institute for Basic Biology, 38 Nishigo-Naka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan.

Abstract

The way in which the number and size of cells in an organ are determined poses a central challenge in our understanding of organ size control. Compensation is an unresolved phenomenon, whereby a decrease in cell proliferation below some threshold level triggers enhanced postmitotic cell expansion in leaf primordia. It suggests an interaction between these cellular processes during organogenesis and provides clues relevant to an understanding of organ size regulation. Although much attention has been given to compensation, it remains unclear how the cellular processes are coordinated. Here, we used a loss-of-function mutation in the transcriptional coactivator gene ANGUSTIFOLIA3 (AN3), which causes typical compensation in Arabidopsis thaliana. We established Cre/lox systems to generate leaves chimeric for AN3 expression and investigated whether compensation occurs in a cell-autonomous or non-cell-autonomous manner. We found that an3-dependent compensation is a non-cell-autonomous process, and that an3 cells seem to generate and transmit an intercellular signal that enhances postmitotic cell expansion. The range of signalling was restricted to within one-half of a leaf partitioned by the midrib. Additionally, we also demonstrated that overexpression of the cyclin-dependent kinase inhibitor gene KIP-RELATED PROTEIN2 resulted in cell-autonomous compensation. Together, our results revealed two previously unknown pathways that coordinate cell proliferation and postmitotic cell expansion for organ size control in plants.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3