Cortical capture of microtubules and spindle polarity in budding yeast - where's the catch?

Author:

Huisman Stephen M.1,Segal Marisa1

Affiliation:

1. Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK

Abstract

In asymmetric divisions, the mitotic spindle must align according to the cell polarity axis. This is achieved through targeting astral microtubules emanating from each spindle pole to opposite cell cortex compartments. Saccharomyces cerevisiae is a powerful genetic model for dissection of this complex process. Intense research in this yeast has rendered detailed models for a program linking actin organization and spindle orientation along the mother-bud axis. This program requires the separate contributions of Kar9p, a protein guiding microtubules along polarized actin cables, and the polarity determinant Bud6p/Aip3 that marks sites for cortical capture at the bud tip and bud neck. In an added layer of complexity, cyclin-dependent kinase (Cdk) differentially regulates spindle pole function to dictate asymmetric spindle pole fate. Asymmetric contacts established by the spindle poles impart a further layer of extrinsic asymmetry restricting recruitment of Kar9p to the pole destined for the daughter cell. As a result, astral microtubules from a single pole are guided to the bud compartment after spindle assembly. Finally, Cdk might also translocate along astral microtubules in association with Kar9p to modulate microtubule-cortex interactions following spindle alignment. Insertion of the mitotic spindle into the bud neck is driven by the microtubule motor dynein. This process relies on the combined action of microtubule-plus-end-tracking proteins and kinesins that control the cell-cycle-dependent abundance of dynein at microtubule plus ends. Thus, this actin-independent pathway for spindle orientation might also be influenced by Cdk.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3