Targeting of an expressed neurotoxin by its recombinant baculovirus

Author:

Elazar Menashe1,Levi Rafi1,Zlotkin Eliahu1

Affiliation:

1. Department of Animal and Cell Biology, The Life Science Institute, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Abstract

SUMMARYAaIT, an insect-selective neurotoxic polypeptide derived from scorpion venom, has recently been used to engineer recombinant baculoviruses for insect pest control. Lepidopterous larvae infected with an AaIT-expressing baculovirus reveal symptoms of paralysis identical to those induced by injection of the native toxin. However, the paralyzed larvae treated by the recombinant virus possess an approximately 50-fold lower hemolymph toxin concentration than insects paralyzed by the native toxin. The mechanism of this potentiation effect was studied using immunocytochemistry, electrophysiology and toxicity assays. (i) Light microscopy, using peroxidase-conjugated antibodies, revealed the presence of toxin in virus-susceptible tissues, including tracheal epithelia located close to the central nervous system and beyond its lamellar enveloping sheath. (ii) High-resolution immunogold electron microscopical cytochemistry clearly revealed the presence of recombinant AaIT toxin inside the thoracic and abdominal ganglia on neuronal cell bodies and axonal membranes. (iii) Ventral nerve cords dissected from silkworm larvae infected with the recombinant baculovirus exhibited a high degree of excitability, expressed as enhanced frequency and bursting mode of their spontaneous activity, when compared to nerve cords infected with the wild-type virus. We conclude that the recombinant-virus-infected tracheal epithelia, outbranching in the body of an infected insect, (i) locally supply a continuous, freshly produced toxin to its neuronal receptors and (ii) introduce the expressed toxin to the insect central nervous system, thus providing it with critical target sites that are inaccessible to the native toxin.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3