‘Poking’ microtubules bring about nuclear wriggling to position nuclei

Author:

Szikora Szilard1,Gaspar Imre1,Szabad Janos1

Affiliation:

1. Department of Biology, University of Szeged, H-6720 Szeged, Hungary

Abstract

Summary Nuclei wriggle in the cells of the follicle epithelium of the Drosophila pre-vitellogenic egg primordia. Although similar phenomena have been reported for a number of cultured cell types and some neurons in the zebrafish embryo, the mechanism and importance of the process have remained unexplained. Wriggling involves successive sudden and random minor turns of the nuclei, approximately three twists per minute with roughly 12° per twist, one of which lasts typically for 14 seconds. Wriggling is generated by the growing microtubules seeded throughout the cell cortex, which, while poking the nuclei, buckle and exert 5–40 piconewtons over ∼16 seconds. While wriggling, the nuclei drift ∼5 µm in a day in the immensely growing follicle cells along the apical–basal axis from the apical to the basal cell region. A >2-fold excess of the microtubules nucleated in the apical cell region, as compared with those seeded in the basal cell cortex, makes the nuclei drift along the apical–basal axis. Nuclear wriggling and positioning appear to be tightly related processes: they cease simultaneously when the nuclei become anchored by the actin cytoskeleton; moreover, colchicine or taxol treatment eliminates both nuclear wriggling and positioning. We propose that the wriggling nuclei reveal a thus far undescribed nuclear positioning mechanism.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3