Critical thermal limits affected differently by developmental and adult thermal fluctuations

Author:

Salachan Paul Vinu1,Sørensen Jesper Givskov1

Affiliation:

1. Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Bldg. 1540, 8000 Aarhus C, Denmark

Abstract

Means and variances of the environmental thermal regime play an important role in determining the fitness of terrestrial ectotherms. Adaptive phenotypic responses induced by heterogeneous temperatures have been shown to be mediated by molecular pathways independent of the classic heat shock responses, however, an in-depth understanding of plasticity induced by fluctuating temperatures is still lacking. We investigated high and low temperature acclimation induced by fluctuating thermal regimes at two different mean temperatures, at two different amplitudes of fluctuation and across the developmental and adult life stages. For developmental acclimation, we found mildly detrimental effects of high amplitude fluctuations for critical thermal minima, while the critical thermal maxima showed a beneficial response to higher amplitude fluctuations. For adult acclimation involving shifts between fluctuating and constant regimes, cold tolerance was shown to be dictated by developmental temperature conditions irrespective of the adult treatments, while the acquired heat tolerance was readily lost when flies developed at fluctuating temperature were shifted to a constant regime as adults. Interestingly, we also found that effect of fluctuations at any life stage was gradually lost with prolonged adult maintenance suggesting a more prominent effect of fluctuations during developmental compared to adult acclimation in Drosophila melanogaster.

Funder

Aarhus Universitets Forskningsfond

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3