Mutations in the Drosophila ortholog of the vertebrate Golgi pH regulator (GPHR) protein disturb endoplasmic reticulum and Golgi organization and affect systemic growth

Author:

Charroux Bernard1,Royet Julien1

Affiliation:

1. Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille-Luminy UMR 7288, F-13288 Marseille, France

Abstract

Summary Sorting of secretory cargo and retrieval of components of the biosynthetic pathway occur in organelles such as the Golgi apparatus, the endoplasmic reticulum and the endosomes. In order to perform their functions in protein sorting, these organelles require a weakly acidified lumen. In vitro data have shown that Golgi luminal pH is in part regulated by an anion channel called Golgi pH Regulator (GPHR). Mammalian cells carrying a mutated GPHR version present an increased luminal pH leading to delayed protein transport, impaired glycosylation and Golgi disorganization. Using Drosophila as a model system, we present here the first phenotypic consequences, at the organism level, of a complete lack of GPHR function. We show that, although all individuals carrying complete loss-of-function mutations in the dGPHR gene can go through embryonic development, most of them die at late larval stages. The dGPHR mutations are, however, sublethal and can therefore generate escapers that are smaller than controls. Using cellular and molecular readouts, we demonstrate that the effects of dGPHR mutation on larval growth are not due to Insulin signaling pathway impairment and can be rescued by providing dGPHR in only some of the larval tissues. We reveal that, although functionally exchangeable, the invertebrate and vertebrate GPHRs display not completely overlapping sub-cellular localization. Whereas the mammalian GPHR is a Golgi-only associated protein whose inactivation disturbs the Golgi apparatus, our data suggest that dGPHR is expressed in both the ER and the Golgi and that dGPHR mutant flies have defects in both organelles that lead to a defective secretory pathway.

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3