Role of the ribosome in sequence-specific regulation of membrane targeting and translocation of P-glycoprotein signal-anchor transmembrane segments

Author:

Zhang J.T.1,Han E.1,Liu Y.1

Affiliation:

1. Department of Pharmacology and Toxicology, IU Cancer Center and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA. jianzhan@iupui.edu.

Abstract

It is thought that the topology of a polytopic protein is generated by sequential translocation and membrane integration of independent signal-anchor and stop-transfer sequences. Two well-characterized cell-free systems (rabbit reticulocyte lysate and wheat germ extract) have been widely used to study the biogenesis of secretory and membrane proteins, but different results have been observed with proteins expressed in these two different systems. For example, different topologies of P-glycoprotein (Pgp) were observed in the two systems and the cause was thought to be the source of ribosomes. To understand how the ribosome is involved in dictating membrane translocation and orientation of polytopic proteins, individual signal-anchor sequences of Pgp were dissected and examined for their membrane targeting and translocation in a combined system of wheat germ ribosomes (WGR) and rabbit reticulocyte lysate (RRL). Addition of wheat germ ribosomes to the rabbit reticulocyte lysate translation system can enhance, reduce, or have no effect on the membrane targeting and translocation of individual Pgp signal-anchor sequences, and these effects appear to be determined by the amino acid residues flanking each signal-anchor. Ribosomes regulate the membrane targeting and translocation of Pgp signal-anchors in a polytopic form differently from the same signal-anchors in isolation. Furthermore, we demonstrated that ribosomes regulate the membrane targeting and translocation of each signal-anchor cotranslationally and that this activity of ribosomes is associated with the 60S subunit. Based on this and previous studies, we propose a mechanism by which ribosomes dynamically dictate the membrane targeting and translocation of nascent polytopic membrane proteins.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3