Live dynamics of GFP-calponin: isoform-specific modulation of the actin cytoskeleton and autoregulation by C-terminal sequences

Author:

Danninger C.1,Gimona M.1

Affiliation:

1. Institute of Molecular Biology, Department of Cell Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria.

Abstract

The calponin family of F-actin-, tropomyosin- and calmodulin-binding proteins currently comprises three genetic variants. Their functional roles implicated from in vitro studies include the regulation of actomyosin interactions in smooth muscle cells (h1 calponin), cytoskeletal organisation in non-muscle cells (h2 calponin) and the control of neurite outgrowth (acidic calponin). We have now investigated the effects of calponin (CaP) isoforms and their C-terminal deletion mutants on the actin cytoskeleton by time lapse video microscopy of GFP fusion proteins in living smooth muscle cells and fibroblasts. It is shown that h1 CaP associates with the actin stress fibers in the more central part of the cell, whereas h2 CaP localizes to the ends of stress fibres and in the motile lamellipodial protrusions of spreading cells. Cells expressing h2 CaP spread more efficiently than those expressing h1 CaP and expression of GFP h1 CaP resulted in reduced cell motility in wound healing experiments. Notably, expression of GFP h1 CaP, but not GFP h2 CaP, conferred increased resistance of the actin cytoskeleton to the actin polymerization antagonists cytochalasin B and latrunculin B, as well as to the protein kinase inhibitors H7-dihydrochloride and rho-kinase inhibitor Y-27632. These data point towards a dual role of CaP in the stabilization and regulation of the actin cytoskeleton in vivo. Deletion studies further identify an autoregulatory role for the unique C-terminal tail sequences in the respective CaP isoforms.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3