Modulation of joint and limb mechanical work in walk-to-run transition steps in humans

Author:

Pires Neville J.1ORCID,Lay Brendan S.1,Rubenson Jonas12ORCID

Affiliation:

1. School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia

2. Biomechanics Laboratory, Department of Kinesiology, Pennsylvania State University, University Park, PA, 16803, USA

Abstract

Surprisingly little information exists of the mechanics in the steps initializing the walk-to-run transition (WRT) in humans. Here we assess how mechanical work of the limbs (vertical and horizontal) and the individual joints (ankle, knee and hip) are modulated as humans transition from a preferred constant walking velocity (WLK) to a variety of running velocities (RUN; ranging from a sprint to a velocity slower than WLK). WRTs to fast RUNs occur nearly exclusively through positive horizontal limb work, satisfying the goal of forward acceleration. Contrary to our hypothesis, however, positive mechanical work remains above that of WLK even when decelerating. In these WRTs to slow running, positive mechanical work is remarkably high and is comprised nearly exclusively of vertical limb work. Vertical-to-horizontal work modulation may represent an optimization for achieving minimal and maximal RUN velocity, respectively, while fulfilling an apparent necessity for energy input when initiating WRTs. Net work of the WRT steps was more evenly distributed across the ankle, knee and hip joints than expected. Absolute positive mechanical work exhibited a clearer modulation towards hip-based work at high accelerations (> 3 m s−2), corroborating previous suggestions that the most proximal joints are preferentially recruited for locomotor tasks requiring high power and work production. In WRTs to very slow RUNs, high positive work is nevertheless done at the knee, indicating that modulation of joint work is not only dependent on the amount of work required but also the locomotor context.

Funder

University of Western Australia

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference41 articles.

1. Moment and power of lower limb joints in running;Belli;Int. J. Sports Med.,2002

2. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis;Besier;J. Biomech.,2003

3. Muscle function in vivo: a comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power1;Biewener;Am. Zool.,1998

4. Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective;Biewener;Excersice Sport Sci. Rev.,2000

5. The pace of life: revisited;Bornstein;Int. J. Psychol,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3