The energetic consequences of dietary specialization in populations of the garter snake, Thamnophis elegans

Author:

Britt E. J.1,Hicks J. W.1,Bennett A. F.1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA

Abstract

SUMMARY We investigated the intraspecific variation in digestive energetics between dietary specialist and generalist populations of the Western Terrestrial garter snake (Thamnophis elegans) in northern California. Coastal populations have a specialized diet of slugs and inland populations have a generalized diet of fish, anurans, mice and leeches. The difference in prey preference between the two populations is congenital, heritable and ontogenetically stable. To examine energetic specializations and trade-offs in these populations, we measured the net assimilation efficiency of each snake population on both slug (Ariolimax columbianus) and fish(Rhinichthys osculus) diets. The net assimilation efficiency was measured during digestion of a meal and continued until metabolic rate re-attained prefeeding levels. Coastal snakes were able to utilize 62% more of the ingested energy towards production from slug diets through both increased assimilation of nutrients and reduced digestive costs. For fish, assimilation and digestive costs were the same in both coastal and inland populations. These results support the hypothesis that snakes with specialized diets can evolve physiological traits to extract nutrients more efficiently. However,there was no apparent trade-off on the more generalized diet that was associated with this specialization.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ecology of an Insular Snake Assemblage in Coastal Maine;Northeastern Naturalist;2024-02-13

2. When Food Fights Back: Skull Morphology and Feeding Behavior of Centipede-Eating Snakes;Integrative And Comparative Biology;2023-05-29

3. Reptilian digestive efficiency: Past, present, and future;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2023-03

4. Can metabolic traits explain animal community assembly and functioning?;Biological Reviews;2022-08-25

5. Artificial selection for predatory behaviour results in dietary niche differentiation in an omnivorous mammal;Proceedings of the Royal Society B: Biological Sciences;2022-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3