Changes in gut and Malpighian tubule transport during seasonal acclimatization and freezing in the gall flyEurosta solidaginis

Author:

Yi Shu-Xia1,Lee Richard E.1

Affiliation:

1. Department of Zoology, Miami University, Oxford, Ohio 45056,USA

Abstract

SUMMARYSince few studies have examined cold tolerance at the organ level in insects, our primary objective was to characterize the functional responses of the gut and Malpighian tubules (MT) to seasonal acclimatization, chilling and freezing in larvae of the goldenrod gall fly Eurosta solidaginisFitch (Diptera, Tephritidae). From September to December, hemolymph osmolality(455-926 mOsmol kg l-1) and freezing tolerance increased markedly in field-collected larvae. Chlorophenol Red was readily transported into the lumen of the foregut, the posterior portion of the midgut, the ureter, the proximal region of the anterior pair of MT, and entire posterior pair of MT. Ouabain and KCN inhibited transport of Chlorophenol Red in the gut and MT. Transport was readily detected at 0°C and the rate of transport was directly related to temperature. The rate of fluid transport by the MT decreased steadily from a monthly high in September (10.7±0.8 nl min-1 for the anterior pair; 12.7±1.0 nl min-1for the posterior pair) until secretion was no longer detectable in December;this decrease parallels entry into diapause for this species. Even in larvae that died following freezing for 40 days at -20°C, individual organ function was retained to a limited extent. Through the autumn, cholesterol concentrations in the hemolymph increased nearly fourfold. In contrast, the ratio of cholesterol to protein content (nmol mg l-1) in the MT membrane remained relatively constant (22∼24 nmol mg l-1protein) during this period. Freezing of larvae for 20 days at -20°C caused a significant decrease in cholesterol levels in the hemolymph and the MT membranes compared to unfrozen controls. These results suggest that cholesterol plays a role in seasonal cold hardening and freeze tolerance in insects.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3