Fgf9 signaling regulates small intestinal elongation and mesenchymal development

Author:

Geske Michael J.1,Zhang Xiuqin2,Patel Khushbu K.1,Ornitz David M.2,Stappenbeck Thaddeus S.1

Affiliation:

1. Departments of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.

2. Department of Developmental Biology, Washington University School of Medicine,660 South Euclid Avenue, St Louis, MO 63110, USA.

Abstract

Short bowel syndrome is an acquired condition in which the length of the small intestine is insufficient to perform its normal absorptive function. Current therapies are limited as the developmental mechanisms that normally regulate elongation of the small intestine are poorly understood. Here, we identify Fgf9 as an important epithelial-to-mesenchymal signal required for proper small intestinal morphogenesis. Mouse embryos that lack either Fgf9 or the mesenchymal receptors for Fgf9 contained a disproportionately shortened small intestine, decreased mesenchymal proliferation, premature differentiation of fibroblasts into myofibroblasts and significantly elevated Tgfβ signaling. These findings suggest that Fgf9 normally functions to repress Tgfβ signaling in these cells. In vivo, a small subset of mesenchymal cells expressed phospho-Erk and the secreted Tgfβ inhibitors Fst and Fstl1 in an Fgf9-dependent fashion. The p-Erk/Fst/Fstl1-expressing cells were most consistent with intestinal mesenchymal stem cells (iMSCs). We found that isolated iMSCs expressed p-Erk, Fst and Fstl1, and could repress the differentiation of intestinal myofibroblasts in co-culture. These data suggest a model in which epithelial-derived Fgf9 stimulates iMSCs that in turn regulate underlying mesenchymal fibroblast proliferation and differentiation at least in part through inhibition of Tgfβ signaling in the mesenchyme. Taken together, the interaction of FGF and TGFβ signaling pathways in the intestinal mesenchyme could represent novel targets for future short bowel syndrome therapies.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3